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Absbdct. A non-trivial cluster growth model, equivalent to the lattice-free Eden-C model. is 
proposed. The model is constructed by randomly adding contiguous circles without overlapping. 
Large-scale computer simulations show the interior density is constmt at 0.650. while the 
boundary is fractal, with a thickness proportional to the 0.396 power of the mean radius. 

1. Introduction 

In 1961 Eden [I]  introduced a stochastic growth model which may be used to study the 
propagation of epidemics, chemical reactions, tumour growths, forest fires and percolation 
theory. The algorithm is essentially as follows. On a square lattice a cell is labelled 
as ‘infected‘. Then any one of the four possible adjacent cells is randomly chosen to 
be infected. The pair now has six possible growth surfaces. The process continues untiI a 
cluster is formed [2,3]. It is found that the cluster is compact 141, i.e. has a solid core. Three 
versions of the Eden model have been introduced [5] .  In version A, a to-beinfected cell is 
chosen with same probability from all uninfected cells acjacent to the cluster. In version B, 
an infection path from all possible paths from infected to adjacent uninfected cells is chosen 
with the same probability (the original Eden model). In version C, firstly a boundary cell 
of the cluster is randomly chosen, then an uninfected adjacent cell is randomly chosen to 
be infected. All three models give similar but somewhat different boundary statistics. 

The Eden cluster, however, is anisotropic due to the underlying lattice, i.e. its shape 
tends to lengthen along the directions of the lattice axes. In comparison to diffision- 
limited aggregation (DLA) models [6,7] the Eden anisotropy is much weaker [&IO], the 
orientational differences being about 2-2.5% in growth velocity and 9-11% in surface 
width [I I]. However, even small anisotropies wreak havoc in the estimation of the cluster 
boundary width [8,12]. Thus most analyses to date simulated Eden growth on a strip 
[13,10] where such directional preferences could be more uniform than the Eden cluster. 

Even for the strip geometry the numerical simulations for the boundary properties are 
still very difficult. Convergence to the asymptotic state is slow and large numbers of cells 
are needed. In order to accelerate the process, a ‘noise reduction’ method was used on 
the strip geometry with apparent success 1141. However, the same method applied to the 
cluster greatly enhances anisotropy, such that the Eden cluster rapidly changes from circular 
to rhombic shape [15,16]. Excellent reviews of the current situation were written by Vicsek 
[17] and Meakin [121. 

In order to exclude the troublesome lattice effects, some off-lattice (no lattice) models 
have been proposed. Meakin [I81 found that the result of the off-lattice DLA model differs 
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from that of the square lattice. Jullien and Meakin [19] studied the off-lattice ballistic 
deposition model. The only existing off-lattice Eden model was introduced by Botet [ZO]. 
The cluster is composed of touching circles instead of squares. The centre of a possible 
additional circle can only be on connected arcs (may be multiply connected) enclosing the 
cluster. Define a continuous line connecting all arcs and choose at random a point on this 
line to be the centre of the new growth. Botet found that the interior of the cluster shows 
distinct holes which differs from the compact Eden interior. Botet’s pioneer off-lattice Eden 
model is equivalent to the version-A Eden model where all possible sites are chosen with 
the same probability. Unfortunately the samples are somewhat small, perhaps due to the 
fact that its numerical implementation is quite expensive. 

Since only an off-lattice Eden model can correctly predict the properties of isotropic 
natural growth (although for some crystals the growth can be anisotropic), it is imperative 
to investigate more deeply such stochastic growth models. In the current study we shall 
present the other basic growth model, namely the off-lattice version-C Eden cluster model 
which complements the work of Botet. 
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2. The model and its properties 

The algorithm is described as follows. 

(i) On a plane a living cell (a circle) is introduced. Only living cells are capable of 

(ii) A cell is selected randomly from the existing living ones. The range of directions 
along which an adjacent touching cell can be grown (attached) without overlapping any 
existing cells is identified. A random direction is chosen from this admissible range and a 
new cell is grown. 

growth. 

(iii) If there are no possible growth directions, the cell is labelled dead. 

The process is similar to the Eden model version C whereby one chooses a possible filled 
site then fills a possible adjacent site. However, the present model is lattice-independent. 
In what follows we shall investigate the statistical properties of thii model using largescale 
computer simulations. 

A typical result, after a growth of 3000 cells, is shown in figure 1. The actual cell 
membranes of course are not circles but are Voronoi-Dirichlet polygons surrounding their 
centres. Unlike Botet’s version-A model, living cells exist only on the cluster boundary 
(figure 2). We see that the interior cells are almost evenly distributed but the cluster boundary 
is uneven. 

Using the centre of mass as the origin, one can draw concentric circles of radius r 
(radius of one cell = 1 unit) and count the number of cells inside. Figure 3 shows a typical 
result for 200000 cells. We see that the number of cells is proportional to r z  in the interior, 
i.e. the density p (ratio of cell area to domain area) is constant. We used 100 samples of 
2 x lo5 cells and established the value 

E [ p ]  = 0.6500 

with a standard deviation of O.OOO77. Notice that the interior density of the Eden squares is 
1, the density of the most closely packed circles (each with six contacts) is 3r/2& = 0.9069, 
and that of arandom dense packing of circles (each with about three contacts) is 0.772 [21]. 
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Figure 1. A cluster of 3000 cells. 

Fwre 2. Living cells of figure 1 

Next we looked at the living cells in the boundary. Figure 4 shows the number of living 
cells L is proportional to the mean radius R of the boundary. We find 

L = 3.5801. (2) 
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Figure 3. Number of cells enclosed by a circle of radius r ,  centmi at the centre of mass (a 
typical sample). 
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Figure 4. Number of living cells versus its mean radius (a typical sample). 

The slope has a standard deviation of 0.0153. The ‘thickness’ of the boundary can be 
quantified by the standard deviation U of the cell radial distance. Figure 5 shows a typical 
result using 2 x 105 cells. We find, with 100 samples, 

U = 0.8813R0.396. (3) 

The value of 0.396 is close to the universal value of f predicted by Kardar, Parisi and 
Zhang 1221 using a continuum theory based on a nonlinear Langevin equation. 
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Figure 5. The thichess of the boundary represented by the standard deviation from its mean 
radius (a typical sample). 

3. Discussion 

Since the use of a lattice in the algorithm greatly affects the resulting predictions of stochastic 
growth, the importance of the off-lattice models cannot be over-emphasized, even though 
such models are far more expensive in their implementation. 

Figure 6. ThRe touchiag cells on a skaight tine. Dashed curves show possible locations of the 
centre of a new growfh. 

Now let us compare the current off-lattice Eden-C model with Botet's off-lattice Eden-A 
model [ZO]. Consider three colinear contiguous circles of radius 1 (figure 6). The centre of 
the next circle added to the cluster would be somewhere on the arcs (dashed lines of radius 
2) indicated by r1, rz, r3, r4. In Botet's version A, the probability of an added circle 
whose centre lies on the arc rz is 
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In the current version C, the probability of choosing the middle circle is i, then the 
probability of choosing rz from the admissible I'z and r4 is i. Thus the total probability 
is d,  a value much larger than that of version A. The growth process of the two versions 
would be different. There are no equivalent version-B off-lattice Eden models. 

A major difference of the results is that version A shows numerous holes, capable of 
accepting new growth in the interior, while version C shows no such holes. As indicated in 
the example above, version C seems to favour the growth of interior cells, thus the interior 
becomes more compact. Another possible explanation is that version A is known to have 
slow equilibriation and strong finite-size corrections, at least for the latticed Eden model 
[23] and perhaps for the off-lattice models as well. Whether versions A and C approach 
the same asymptotic state awaits further study. If the actual growth has no interior holes, 
perhaps the version-C model is more appropriate than version A. 

Both off-lattice Eden models are based on substrate depletion principles which govern 
most biological growth. In fact these are the simplest (and most basic) non-trivial isotropic 
growth models. 

Figure 7. A growth network from figure I. 

Recently there has been some interest in using the Eden model to generate growth 
networks [24-261. By connecting the centres of continuous cells the present model can also 
generate dense branching networks. An example is shown in figure 7, which is the skeleton 
of figure 1. The statistics of the growth tips of the tree are exactly the same as that of the 
Eden-C cluster. 
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